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Abstract We examine a short way to reach an exceptional
point that corresponds to a coalescence of two resonance ener-
gies. The application concerns the photodissociation of the Na,
molecule exposed to a laser field. In this case, the resonances
can be correlated with the field-free vibrational states of the
diatomic species. The resonances are due to the field-induced
coupling with the continuum of a repulsive potential. We also
draw attention to a new kind of exceptional point involving a
resonance originating from a vibrational state coalescing with a
shape-type resonance of the repulsive potential. A laser control
scenario, aiming at the adiabatic transport from this field-free
decaying state to a stable field-free vibrational state, is dis-
cussed in terms of field-induced dissociation quenching.

Keywords Photodissociation - Resonances - Exceptional
points - Population transfer - Laser control - Dissociation
quenching - Floquet formalism

Introduction

The description of quantum decaying processes generally
involves the determination of resonance states with complex
eigenenergies. These energies are in fact the poles of the scat-
tering matrix [1]. The rate of decay of an initially prepared state
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is derived from the imaginary part of such energies. One recent
development in this context is the possibility to produce the
degeneracy of two of these energies. This means that both real
and imaginary parts of the resonance energies can merge. This
is achieved by an appropriate choice of the parameters govern-
ing the dynamics of the system. The corresponding point in the
parameter plane is called an exceptional point (EP) [2, 3]. As a
matter of fact, at such a point, there exists a unique resonance
wavefunction with the property of self-orthogonality [4].
Among the consequences of the existence of such EPs, there
is the possibility to produce adiabatically a transfer from one
resonance to another, provided the parameters are varied along
a loop encircling the corresponding EP [5, 6]. Many situations
have been created where EPs have been produced, with all the
consequences expected from the formalism. Among the ex-
perimental confirmations, there is the study of the field distri-
bution in a microwave cavity [7]. EPs have been detected for a
hydrogen atom subjected to electric and magnetic fields [8].
The collision of an electron with an hydrogen molecule is
affected by EPs under some conditions [9].

Here, we consider laser-induced photodissociation of a
diatomic molecular species treated within Floquet formalism
[10]. The resonances are due to the radiative coupling between
the vibrational states of an attractive potential with the contin-
uum of a repulsive one. We have already proved the existence
of EPs in the photodissociation of the H," species and showed
that they could form the basis of a transfer from one of the
field-free vibrational states to another [11]. In the case of Na,,
we have proposed a cooling scenario to bring the molecules to
their lowest vibrational state [12]. We pursue this problem
with two aims: (1) to describe a novel way to reach, in a very
simple manner, the coordinates of an EP in the laser
wavelength-intensity parameter plane; (2) to examine the
possibility of a dissociation quenching mechanism by the
laser-controlled transfer of a field-free shape-type resonance
of the repulsive electronic state onto a field-free vibrational
level of the binding electronic state.
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The paper is organized as follows: in the following Section,
we recall the formalism developed by Hernandez et al. [6, 13]
to discuss the behavior of resonance energies in the vicinity of
an EP. This leads to the formulation of a simple way to reach
EPs. The Floquet theory needed to describe molecular photo-
dissociation is summarized in “Floquet formalism and its
application to Na,”. A section on “EP localization in the laser
parameter plane” proceeds to the determination of an EP of
Na,. We then describe a new type of resonance found for the
special case of a repulsive potential of Na, and which leads to
EPs of a new type. We end with a laser control scenario based
on such EPs, aiming at the adiabatic transfer of population
temporarily prepared on these resonances towards field-free
vibrational bound states (Laser controlled dissociation
quenching). More precisely, this is a dissociation quenching
mechanism. The otherwise naturally decaying population pre-
pared by laser excitation from a lower third electronic state to
the resonance state is trapped momentarily into a metastable
vibrational state.

Resonance behavior close to an exceptional point

Hereafter, we follow the analysis given by Hernandez et al.
[13] for the resonance behavior close to an EP. We take as
the starting point the identity of the complex energies E. of
the pair of resonances close to an EP:

Be=ylE B |y (B -5 (1)

The energies are assumed to depend on two control
parameters, x; and x,, present in the Hamiltonian. In the
following, these parameters are the wavelength and the
intensity of an external laser field. The particular values
leading to the coalescence of two complex energies are
denoted x4” and x5”. We are looking for the conditions
under which there is either equality of the real parts of
the energies, or of their imaginary parts. We assume
that we are close enough to the EP to justify a Taylor
expansion. The only quantity to be considered in such
an expansion is

eo= 26 )] @)

since only this quantity can be close to zero near an EP
and therefore be at the origin of a discrepancy between
the two energies. Following [13] we write an approxi-
mation to €. as

e =i/ 2O )+ Colr )] ®)
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Hernandez et al. [6, 13] introduce three column vectors

g_ 51 _ [ *1 —X‘lgP ﬁ— ReCl i_ ImCl
\&/) \n-xf T\ Rey ) T \imCy
(4)
An analysis of the energy splitting shows that the real and

imaginary parts of the resonance energies close to the EP
differ respectively by

1
e - 25 | (73) + (72) 23]
(5)
and
1
mies) 251 | (®3) + (72) - 23]
(6)

The cancellation of the energy difference €. (i.e., the
fulfillment of the resonance coalescence condition) is

N
obtained by a specific choice of two unit vectors &, and

5 ; in the parameter plane. More precisely, the real parts (Eq. 5)
are canceled with the choice:

— —_— > — —>
T 8x=0 R.&x=—|R. & (7)
while the imaginary parts (Eq. 6) are canceled with the choice:
— — — =

1€ =0 RE=[R¢ (8)

Equations 7 and 8 lead to the following important con-
sequence:

— —
Sr=—9¢, (9)
the interpretation being that the half-axis starting from the

EP defined by ?R is a branch cut for the real parts of
the resonance energies, while the half-axis supported

by E), and lying in the opposite direction, is a branch
cut for their imaginary parts [6, 13]. Finally, the com-
mon point of these two half-axes is precisely the EP,
where both real and imaginary parts of the resonance
energies are equal.

Floquet formalism and its application to Na,

We consider a 1D molecular system interacting with an
external electromagnetic field. This is justified when the
pulse duration is less than the rotational period, such that
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the rotational motion is approximately frozen. With a time-
periodic Hamiltonian H (R, ¢) the Floquet ansatz consists in
writing the wave function in the form

(R, t) = e Ert/hdp(R, t) (10)

where @r(R,t) is a periodic function of time fulfilling the
eigenvalue equation

HF(R,I)QF(R,I) = EF@F(R,I) (11)
the Floquet Hamiltonian being

Hr(R,t) = H(R,t) — mﬁ (12)
ot

Er is called a quasi-energy. For time-periodic Hamilto-
nians, such energies play the same role as the eigenenergies
of time-independent Hamiltonians. Our model implies two
electronic states. Na, is an illustrative example of this situ-
ation with electronic states (a) >~ and (1) 3II,, hereafter
abbreviated as |u)and |g)respectively, and depicted in Fig. 1
after the field-dressing operation described below. The low-
est electronic state accommodates 14 bound vibrational
levels, while the other potential is repulsive.

The wave function is written

|Pr(R, 1)) = 2, (R, 1)]u) + (R, 1) |g) (13)

R is the nuclear coordinate. With the length-gauge and the
long-wavelength approximation, the nuclear wave functions
are solutions of the time-dependent Schrodinger equation

[H - ih%l}s(}z, t)=0 (14)
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Fig. 1 The field-dressed potentials of the Na, molecule for a wave-
length A=552 nm. The horizontal segments (solid black lines) indicate
the positions of the resonances (R, R;...) associated with the repulsive
potential Vg — hw. The dotted red lines indicate the positions of the
bound levels of the attractive potential V. Figure in color online

Z'is the column vector made of x, and x,,. H is the matrix
operator

Vu(R)
H(R)E(t)

Tr = —h? /2 ,/\/l(dg/ d RQ) is the vibrational kinetic
energy operator, with M the reduced mass. V(R) and V(R)
are the two Born-Oppenheimer potentials. ;4(R) is the electron-
ic transition dipole moment between states [u)and |g ). £(¢)
is the linearly polarized laser electric field amplitude of the
form Eycos(wt), with a frequency w, wavelength A = 2z¢/@

H(R)E(1)

H=1Tyz + V() (15)

and intensity / o< 5(2). The Floquet ansatz applied to this case
consists in writing the vector wave function as

— e—iEFt/h (16)

o (R,t) (k=u, g), being time periodic, can be Fourier
expanded as

w(RD)= D "G(R) (17)

n=—00

Two channel wavefunctions are enough for convergence
when the laser intensity is such that only single photon
processes are present. The two channel wave functions

needed in this situation can be taken as ¢/(R) and <p§’1 (R)

or in short ¢,(R) and ¢,(R). They are solutions of the
coupled equations

(Te + Vu(R) = EFlp,(R) = 1/2Eu(R)p,(R) =0 (18)

Tr+ Vy(R) — hw — Ep|@g(R) —1/2 & p(R)pu(R) = 0
(19)

The complex resonance energies result from an iterative
matching procedure of outward and inward propagations
using the Fox-Goodwin algorithm [14]. Complex rotation
of the spatial coordinate R in its exterior version is used.
This procedure has the advantage of introducing automatic
L? boundary conditions for a resonance wave function [15,
16]. Finally, it should be noted that this formalism, although
strictly valid for a continuous wave laser, is well known to
apply successfully in cases of pulsed fields accommodating
even only a few optical cycles. Figure 1 gives the potentials
Vu(R) and Vy4(R)—hw corresponding to a wavelength A=
552 nm. The Born-Oppenheimer potentials V,(R) and
Vo(R) are taken from [17] and the electronic transition
moment p(R) from [18].
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EP localization in the laser parameter plane

Our example is the EP resulting from the merging of the
resonances issued from the levels v=3 and v=4 of the Na,
molecule in its (a) 32:{ electronic state. A photodissociation
laser couples these channels to the continuum of the (1)* 17 o
electronic state. We first determine the privileged axis in the
I-\ parameter plane along the direction of the unit vectors

E,; and gdeﬁned in the section Resonance behavior close to
an exceptional point. Two points are enough for this pur-
pose. We calculate the resonance energies for two wave-
lengths, namely A=562.4 nm and A=562.6 nm. The real and
imaginary parts of the resonance energies are shown in
Fig. 2a,b for the smallest of the two wavelengths, and
Fig. 2c,d for the highest. The intensity goes from /=0.3
GW/em? to /=0.4 GW/ecm?. On the left there is a crossing of
the real parts and an avoided crossing of the imaginary parts.
On the right, it is just the reverse. This is a strong indication
that there is an EP for an intermediate wavelength. From these
graphs, it is possible to determine the intensities at which there
is a crossing. This intensity is /=0.369330 GW/cm” in Fig. 2a
and /=0.313314 GW/cm? in Fig. 2d. The equation of the axis
we are looking for can be given the form:

I=al+b (20)
Solving the two equations:

036933 =a 562.4+b 0.313314=a562.6+b (21)

provides the values

a =-0.28008,b = 157.886322 (22)

The next operation is to follow this axis and to determine
for each point along the axis the real and imaginary parts of

the resonances originating from v=3 and v=4. The result is
shown in Fig. 3. Increasing the wavelength means going
from right to left in the graph, since this amounts to a
decrease in intensity. In Fig. 3a, we first see an equality of
the real parts, followed suddenly by a split. The reverse
situation in seen in Fig. 3b. where the imaginary parts are
different and merge suddenly. The critical intensities at
which these events occur can be estimated as 1=0.3328
GW/cm? in Fig. 3a and 1=0.3326 GW/cm” in Fig. 3b.
These values, when used as inputs in the relation be-
tween intensity and wavelength, produce the two wave-
lengths A=562.530 nm and A=562.531 nm. The
coordinates of the EP in the parameter plane derived
from this analysis can be taken as Agp=562.530 nm and
Igp=0.3327 GW/cm?.

Resonances associated with the (1)°17 o State

Rather surprisingly, we found that the potential of the
(1)*II, state used in this study can accommodate resonan-
ces. Some examples are known in the literature of resonan-
ces associated with potentials without barrier. Such is the
case for an exponential potential of the form 4e~°% [19],
with resonances below the asymptotic limit. Another exam-
ple is the step potential where resonances are above or
below the threshold energy [4]. The positions of some of
the shape-type resonances under consideration are shown in
Fig. 1. Some of the widths are given in Fig. 4. There are two
noticeable characteristics. One is that the real parts of the
resonance energies are spaced very regularly (differences of
ca. 20 cm ). The other is that the imaginary parts vary
slowly (around 25¢m ™). Figure 4 illustrates these two prop-
erties. In order to examine these resonances further, we refer

Fig. 2 Crossings between real F \ B \ 7
or imaginary parts of the -82975
resonance energies are used to L,-E\
determine the axis passing 5 -82980
through the exceptional point ~
(EP). a, b Wavelength, A\= )
562.4 nm; ¢, d A=562.6 nm. ;'82985 B N B ]
Figure in color online o~ B 7 B 7
a C
-82990 |~ ( )* - ( )f
0 T T T —___
3 — T :
P s _ — -7 4 ]
£ Th----__
2 r AT i
g " =T 3 .
E s 1 [ 7
f Ol (@)
20 ‘ :
0.3 0.35 04 03 0.35 0.4
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Fig. 3 Going along the axis passing through the EP leads to the
localization of the EP, either as the point at which there is divergence
of the real parts (a) or as the point where there is merging of the
imaginary parts (b) as the intensity is increased (as a consequence of
decreasing the wavelength in Eq. 20). Figure in color online

to a method originating from the work of Humblet and
Rosenfeld [20], devoted to a definition of partial widths
when there is more than one open channel, but which can
also be applied to the present single channel problem. Con-
sider the wave equation and assume that it has been solved
with the Siegert outgoing wave boundary conditions appro-
priate for a resonance [21]:

2

—h—\D”(R) +V(R)¥(R) = EV(R)

23
2M >

We use the notations ¥'(R) and ¥"'(R) for the first and
second derivatives of Y(R) with respect to R. Assuming that
V(R) is real, multiplying this equation by ¥(R)* (the star * is

24

I R 3
=251 b
g
L
~ - RZ -
4] [ ]

E 26 R3. .

Rio Ry g Ry

P e & R R Rs hd i
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Fig. 4 Complex energies of the resonances of the (1)31'[g potential.
The resonances are spaced regularly, with widths all of the same order
of magnitude. R8 is the resonance involved in the transfer studied in
Laser controlled dissociation quenching. Figure in color online

for the complex conjugate) and subtracting from this ex-
pression the product of ¥(R) by the complex conjugate of
the wave equation (Eq. 23) yields

—h—Z[\I’*(R)‘I’"(R) ~ VRV (R)] = (B~ E") [¥(R)P

(24)
Writing the energy in the form £ = Eg — iI'/2, we have
(E — E") = —iI'. The bracket on the left is
(V" (R)Z"(R) — W(R)W"*(R)]

— d[0" (R (R) — U(R)P'*(R)] (25)

Integrating both sides from 0 to R, and taking into ac-
count that at R=0 the wave function is vanishing for a
molecular problem, we obtain

2 R
- [U*(R)W'(R) — U(R)T*(R)] :iF/ |U(R)|’dR
2M 0
(26)
From this relation, the width is obtained as
2 Im(U*(R)U' (R
[ B Im(T(R)V(R)) -

- M P W(R)[2dR

Figure 5 compares the result of this analysis, giving the
width from the wave function to the value obtained from the
quantization condition. This is done for the resonance Rg of
Fig. 1. The agreement is almost perfect, even in the non-
classical region, which is on the left of the turning point. Far
inside the non-classical region, the error on the width is
surprisingly small (about 0.001cm™"). This shows that the
Humblet-Rosenfeld formula goes far beyond the result of a
flux analysis in the asymptotic region.

Laser-controlled dissociation quenching

The last application in our search for EPs in this model for
Na, is the observation that the occurrence of a degeneracy of
complex energies can involve a pair of levels mixing the two
kinds of resonances described in this work: the resonances
originating from the field-free vibrational states of the (a
35, state, with the resonances of the (1)3IT ¢ state as
modified by the application of a laser field. To give an exam-
ple, we found that with a chirped laser pulse of the form

A= 2o+ 64 sin(9); I = Lyaesin(¢/2) (28)
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Fig. 5 a Resonance wave

0.5 T T
function (in atomic units) used

in this analysis. The black thick
and the red thin curves
represent the real and imaginary
parts, respectively. b A
comparison of the imaginary
part (solid red line) of the R8
resonance energy of the ( 1)3Hg
electronic state (see Fig. 1) as
obtained from energy quantiza-
tion using Floquet formalism
with the result of Humblet-
Rosenfeld formula Eq. (27)
(black dashed line). The black
bullet shows the position of the
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Figure in color online
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it is possible to produce an adiabatic transfer from a field-free
vibrational state of the (a) 3%, state to a field-free resonance
state of the (1) 311 ¢ state. ¢ varies from 0 to 27. The pulse
parameters are A\o=552 nm, dA=0.5 nm and /,,,,=0.3 GW/
cm?®. It is worthwhile noting that, in the vicinity of an EP, the
adiabaticity conditions validating the Floquet approach, which
is referred to have to be checked very carefully through the
choice of laser parameters (in particular pulse duration). The
transfer is from v=0 to the resonance Rg of Fig. 4. This is a
proof that there is an EP involving the two kinds of resonances

14
R (a.n.)

Figure 6 presents the transfer from Rg to v=0. It must
be emphasized that, even in the absence of a field, a
complex eigenenergy corresponds initially to the former
state. To the latter state there corresponds a real eige-
nenergy at the end of the pulse. It is possible to calcu-
late the survival probability P of the initial state from
an expression based on an adiabatic formulation of the
Floquet theory [22, 23]:

ty
inside this loop. This suggests a different experiment. Such P — exp [ — ! / [‘(t')dt'} (29)
transfers are reversible. It is sufficient to change J\ into—JA. 0
Fig. 6 Transfer from resonance 0 i 1
Rg of the (1)° I1, electronic state
to the bound vibrational level i f (b) |
v=0 of the a > X} state (see 5 1
Fig. 1). a Trajectory in the \
complex energy plane leading 3 K —0.75
from Ry (red bullet) to v=0 S0k \
(black bullet). b Survival prob- o > k1 i
abilities of the state originating g r é \
from Ry calculated in two ways. 2 sk = \ Hos
The red dashed curve is the o S \ ’
decay of Rg in the absence of ~ - ey \
radiative coupling. The black ,E o\ T
solid curve corresponds to an 201 \
adiabatic transfer along the loop L \\ N0.25
as discussed in the text. Figure
in color online =i | \\ )
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tr is the pulse duration. I1(#') is the width calculated at
time ¢ with the field parameters at that time. # is related to
the pulse phase ¢ of Eq. (28) by

r_ 9

r=_"t (30)

The survival probability is shown by the continuous
black curve in Fig. 6b, calculated with #=800 fs. This
choice ensures an adiabatic transfer, since, from the energy
interval between the two states v=3,4 (17 cm™ ), it is esti-
mated that the pulse duration has to exceed 400 fs, such that
its energy broadening be less than this interval. Comparison
is made with the decay of Rg in the absence of a field
(dashed red curve). We conclude that the application of the
laser pulse has. to a large extent. quenched the decay of R,
with 25 % of the molecules being led to the bound state v=0
at time # This state belongs to an excited electronic state
and has a lifetime of the order of a few ns, while we are
concerned with processes lasting less than a picosecond.

Conclusion

In this work we have proven that the purely repulsive
potential of the (1) *IT ¢ electronic state of the Na, molecule
unexpectedly accommodates a full series of shape-type res-
onances with regular spacings and almost constant widths.
This is presumably in relation to the specific form of this
potential curve, which shows, in particular, a plateau behav-
ior extending up to about 2 A in terms of internuclear
distances. The laser parameters (wavelength and intensity)
inducing the coalescence of two resonances originating
from this shape-type resonance and a nearby field-dressed
bound vibrational state define a new type of EP. Moreover, it
is shown that, following the well known properties of EPs, a
laser loop encircling such an EP offers the possibility of
adiabatic transport of a population from the field-free shape-
type resonance to the field-free vibrational state. Our claim
is that such a control scheme is a dissociation quenching
strategy. Actually, the shape-type resonance, prepared ini-
tially by photoexcitation, is trapped into a metastable vibra-
tional state, the mechanism involving three electronic states.

We have shown that, with a convenient choice of laser
parameters, up to one-fourth of the population prepared on
the shape-type resonance can be preserved from
dissociation.

Acknowledgments The authors gratefully acknowledge fruitful dis-
cussions with Dr. Amine Jaouadi. R. L. thanks Pr. I. Ortega for his
hospitality at the Instituto de Ciencias Fisicas (UNAM), Cuernavaca,
Mexico, where part of this work was done. This research is supported
partially by France-Canada CFQCU (contract number 2010-19), from
the EU (Project ITN-2010-264951, CORINF), and the joint NSF
(USA)—ANR (France) FRAMOLSENT project.

References

1. Taylor R (1972) Scattering theory. Wiley, New York
2. Kato T (1966) Perturbation theory of linear operators. Springer,
Berlin
3. Heiss WD (1999) Eur Phys J D 17:1
4. Moiseyev N (2001) Non-Hermitian quantum mechanics.
Cambridge University Press, Cambridge
5. Heiss WD (2004) Czech J Phys 54(54):1091
6. Hernandez E, Jauregui A, Mondragon A (2006) J Phys A Math
Gen 39:10087
7. Dembowski C, Grif H-D, Harney HL, Heine A, Heiss WD,
Rehfeld H, Richter A (2001) Phys Rev Lett 86:787
8. Cartarius H, Main J, Wunner G (2007) Phys Rev Lett 99:173003
9. Narevicius E, Moiseyev N (2000) Phys Rev Lett 84:1681
10. Atabek O, Lefebvre R, Nguyen-Dang TT (2003) In: Le Bris C (ed)
Handbook of numerical analysis, vol X. Elsevier, New York
11. Lefebvre R, Atabek O, Sindelka M, Moiseyev N (2009) Phys Rev
Lett 103:123003
12. Atabek O, Lefebvre R, Lepers M, Jaouadi A, Dulieu O, Kokoouline
V (2011) Phys Rev Lett 106:173002
13. Hernandez E, Jauregui A, Mondragén A (2005) Phys Rev E
72:026221
14. Fox L, Goodwin ET (1953) Philos Trans R Soc 245:501
15. Moiseyev N (1998) Phys Rep 302:212
16. Chrysos M, Atabek O, Lefebvre R (1993) Phys Rev A 48:3845
17. Magnier S, Milli¢ P, Dulieu O, Masnou-Seeuws F (1993) J Chem
Phys 98:7113
18. Aymar M, Dulieu O (2005) J Chem Phys 122:204302
19. Atabek O, Lefebvre R, Jacon M (1982) J Phys B At Mol Opt Phys
15:2689
20. Humblet J, Rosenfeld L (1961) Nucl Phys 26:529
21. Siegert AFJ (1939) Phys Rev 56:750
22. Fleischer A, Moiseyev N (2005) Phys Rev A 72:032103
23. Atabek O, Lefebvre R, Lefebvre C, Nguyen-Dang TT (2008) Phys
Rev A 77:043413

@ Springer



	Dissociation quenching using exceptional points
	Abstract
	Introduction
	Resonance behavior close to an exceptional point
	Floquet formalism and its application to Na2
	EP localization in the laser parameter plane
	Resonances associated with the <?thyc=10?>(1)<?thyc=5?>equation(IEq28)...
	Laser-controlled dissociation quenching
	Conclusion
	References


